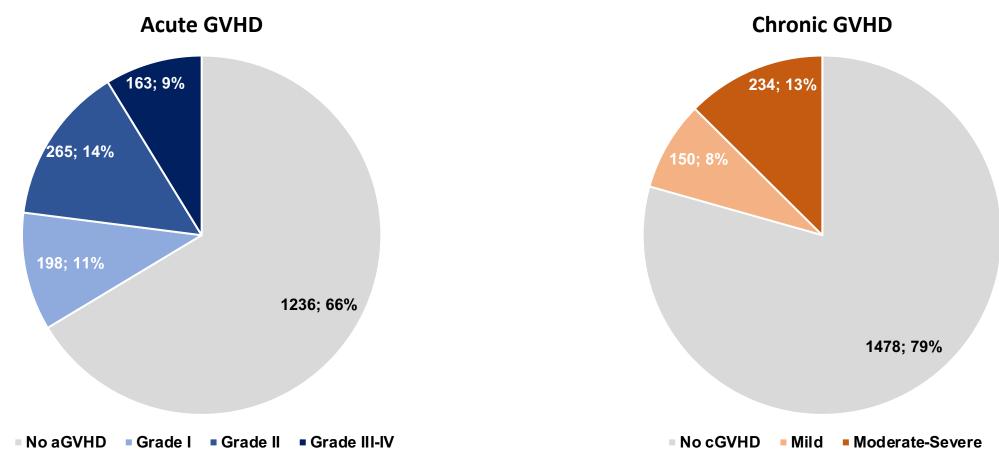


IL MANAGEMENT 2.0 DELLA GVHD: Terapie di Combinazione

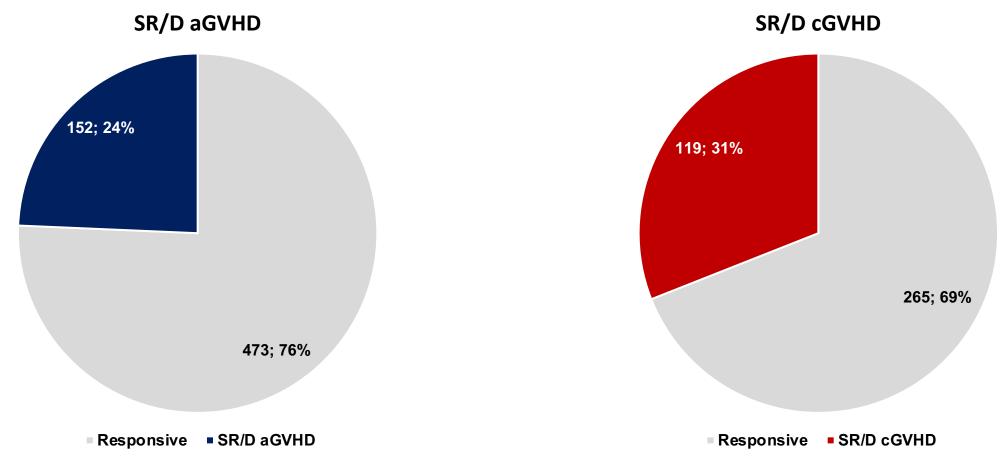

Nicola Polverelli

Unit of Bone Marrow Transplantation and Cellular Therapies
Division of Hematology
Fondazione IRCCS Policlinico San Matteo
Pavia

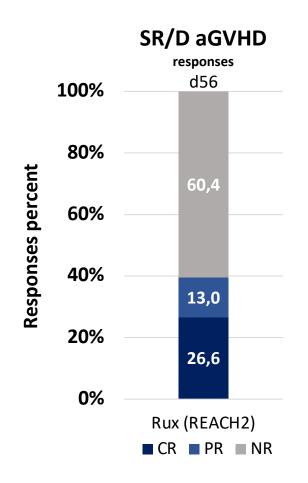
Disclosures of Nicola Polverelli

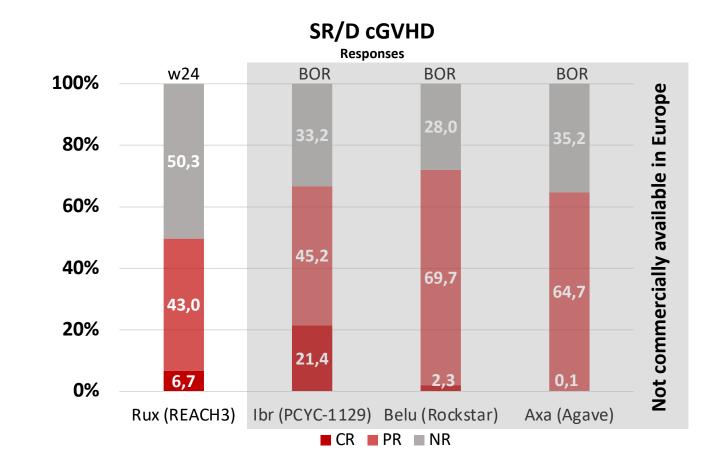
Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Novartis			х		х	Х	
Sanofi							x
Medac					x		
Therakos							x
Neovii							x

Acute and Chronic GVHD: epidemiological data


Data on 1862 transplants (93.0% of 2023 Italian transplant activity) performed in 56 GITMO Centers (90.3%)

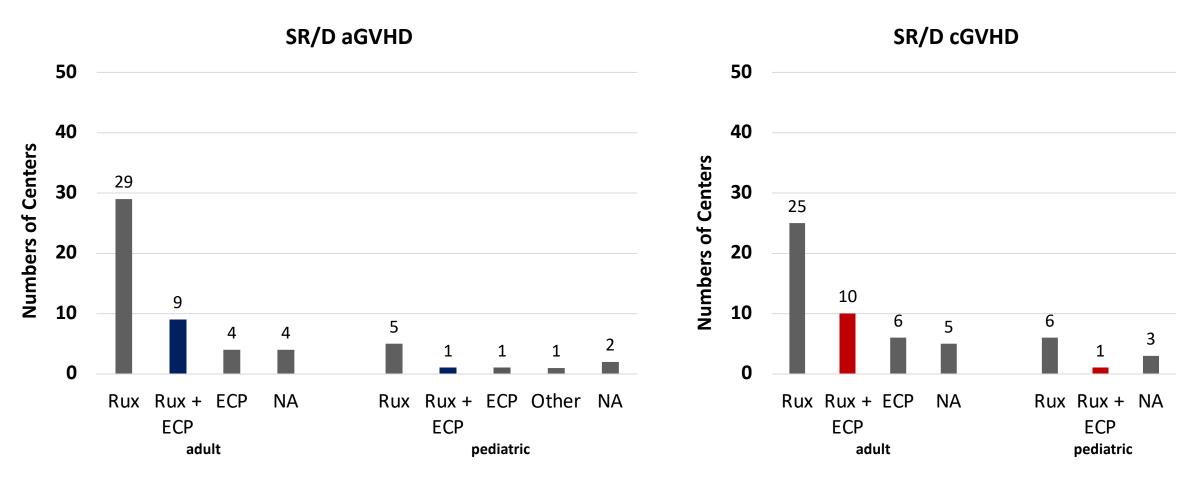
Polverelli N et al. AJH 2025; epub ahead of print


SR/D GVHD: the size of the problem



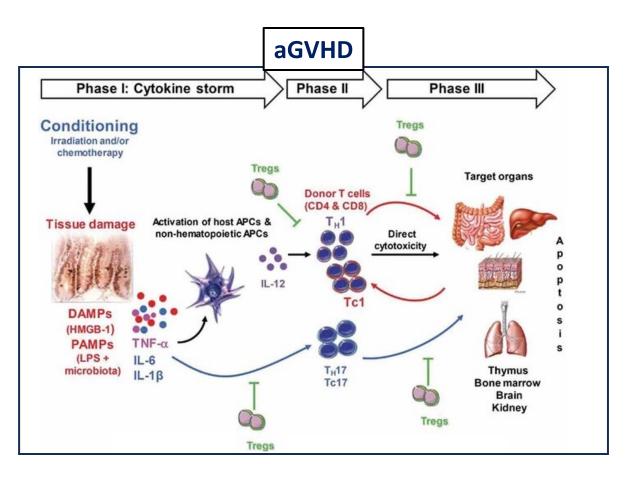
A **higher proportion** of **SR/D aGVHD** cases was observed in the **pediatric population** (38.7% vs. 22.3%, p=0.002), while no significant differences emerged for SR/D cGVHD (36.8% vs. 30.4%, p=0.411).

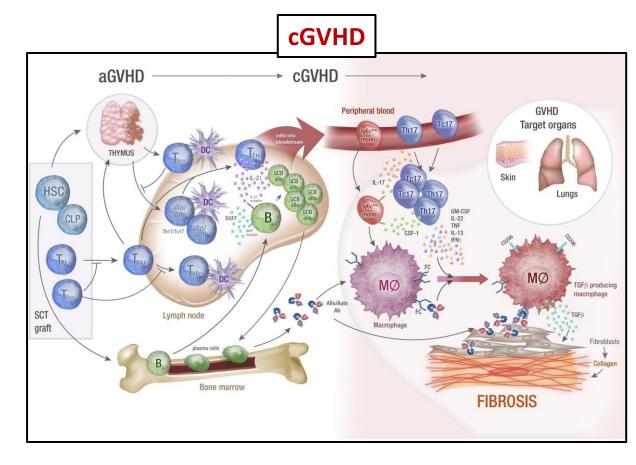
Limitation of second lines in the treatment of SR/D GVHD



Zeiser R et al. NEJM 2020; 382: 1800-10; Zeiser R et al. NEJM 2021; 385: 228-38; Cutler C et al. Blood 2021; 138: 2278-89; wolff D et al. NEJM 2024; 391:1002-1014

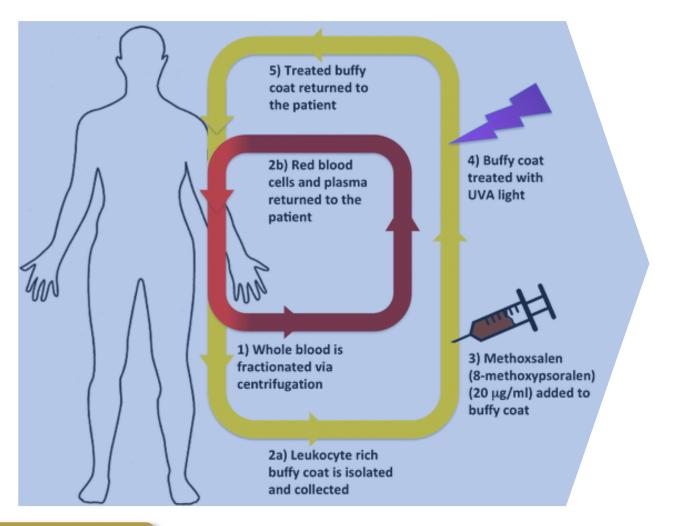
SR/D GVHD: current treatment policy in Italy




Overall, 17.9% and 19.6% of Centers utilized a combinatory second line treatment in aGVHD and cGVHD, respectively.

Polverelli N et al. AJH 2025; epub ahead of print

Understanding the complexity of GVHD pathogenesis



Chuckhlovin A et al. CTT 2017; 6: 19; MacDonald KPA et al. Blood 2017 129:13-21

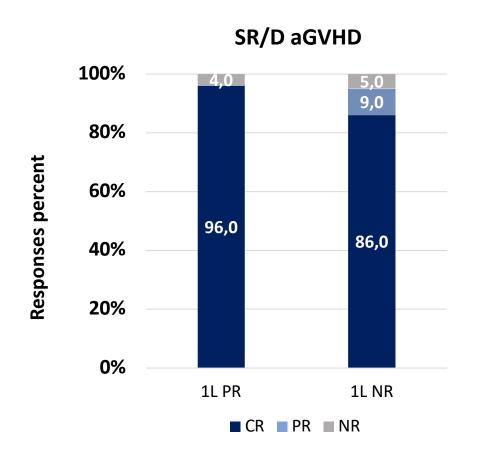
Extracorporeal photoapheresis for the treatment of GVHD

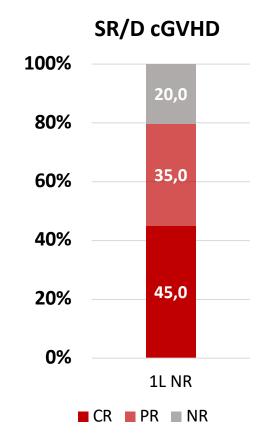
Apoptosis of lymphocytes

Differentiation of dendritic cells

Increase in Tregs

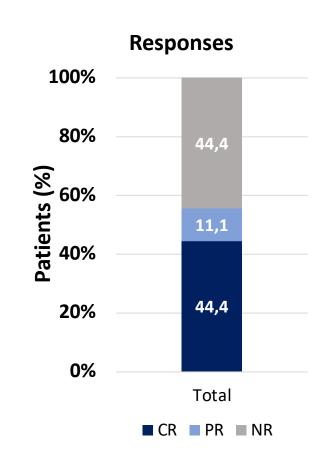
Anti-inflammatory cytokines


Pro-inflammatory cytokines


Drexler B et al. Transfus Med Hemother 2020;47:214-224

The efficacy of ECP treatment: the GITMO report

A total of 94 patients (48% with aGVHD) were recruited in 19 GITMO Centers



ECP: the ideal partner for combination strategies?

Overall, 18 patients with severe low GI SR aGVHD, were treated with ruxolitinib + ECP

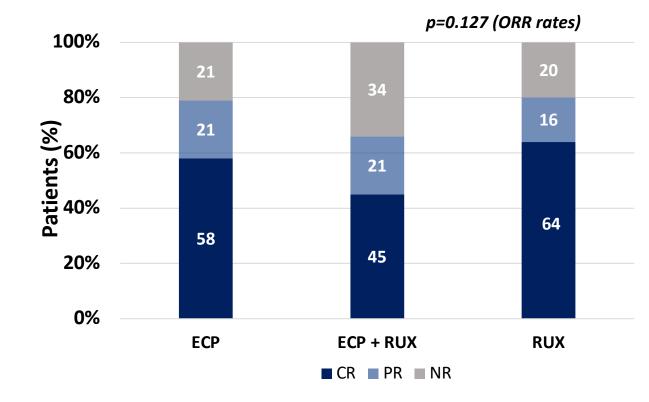
Features	Total (18)
Underliying disease	
MDS	6 (33%)
PMF	5 (28%)
ALL	4 (22%)
AML	2 (11%)
MM	1 (5%)
aCML	1 (5%)
Median age, y (range)	55 (21-73)
Donor	
MRD	8 (44%)
MUD	7 (39%)
MMUD	3 (17%)
Grade III-IV aGVHD, n (%)	18 (100%)

Safety profile:

Grade III-IV leukopenia (5,6%) Grade III-IV anemia (0%)

Grade III-IV thrombocytopenia (5,5%)

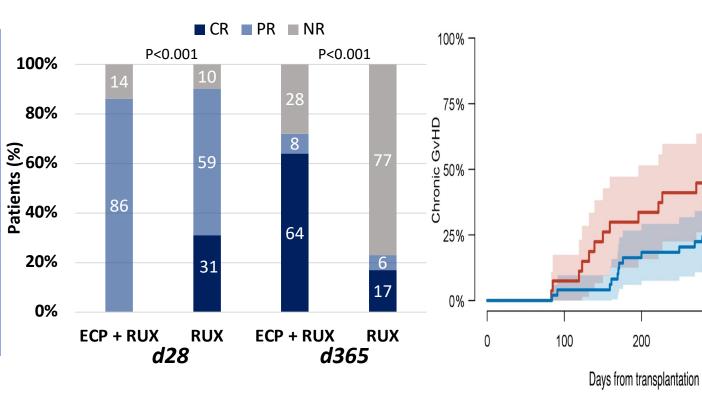
CMV reactivations (67%)



ECP vs ECP + RUX vs RUX: a comparative GITMO analysis

A total of 233 adult patients with SR/D aGVHD requiring 2L treatment from January 2015 to December 2021 were included

Parameter	ECP (n=124)	ECP + RUX (n=53)	RUX (n=56)	р
Age (median)	53 (18–73)	55 (20–75)	54 (19–71)	0.52
Male (%)	65%	68%	59%	0.59
AML diagnosis	38%	45%	43%	0.79
Period 2019–2021	47%	74%	68%	0.001
SR-aGVHD gIII–IV	29%	74%	61%	<0.001
SR-aGVHD multiorgan	36%	64%	41%	0.002
SR-aGVHD lower GI	39%	79%	64%	<0.001
SR-aGVHD skin-only	52%	21%	23%	<0.001


Battista ML et al. **BMT 2025**;60:1406-09

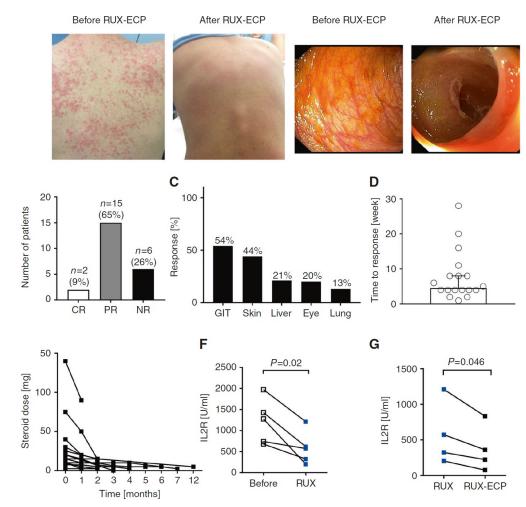
ECP + Ruxo in aGVHD: Influence on cGVHD

A single center experience on **78 patients with SR/D aGVHD treated** from January 2015 to December 2022

Parameter	ECP + RUX (n=49)	RUX (n=29)
Age (median)	62	59
Male (%)	59%	45%
AML diagnosis	18%	21%
Grade III-IV SR aGVHD	100%	64%
Stage III-IV low GI	84%	27%
Median duration of RUX	77d	46d

Lastovytska I et al. *Haematologica 2025*; 110(7):1536-1544.

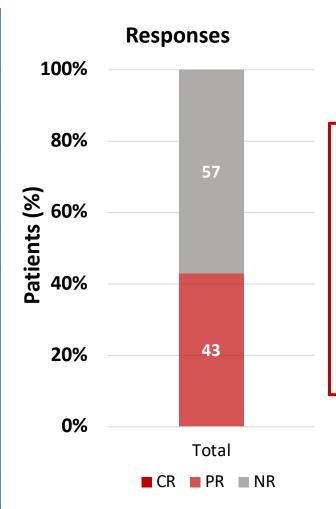
P = 0.013


400

300

ECP + RUX combination in refractory severe cGVHD

Clinical Parameter	Total n=23
Median duration of cGVHD	2m (range, 0.5–35)
Median duration of ECP-RUX	6m (1–27)
Start of treatments	
Simultaneously	35% (8/23)
ECP first	30% (7/23)
RUX first	35% (8/23)
Organ involvement ≥2 organs	87% (20/23)
Most frequent organs	
Skin	78% (18/23)
Liver	61% (14/23)
GIT	57% (13/23)
Eye	43% (10/23)
Lung	35% (8/23)
Musculoskeletal	4% (1/23)
grade III NIH cGVHD	57% (13/23)
Treatment line >2	91% (21/23)

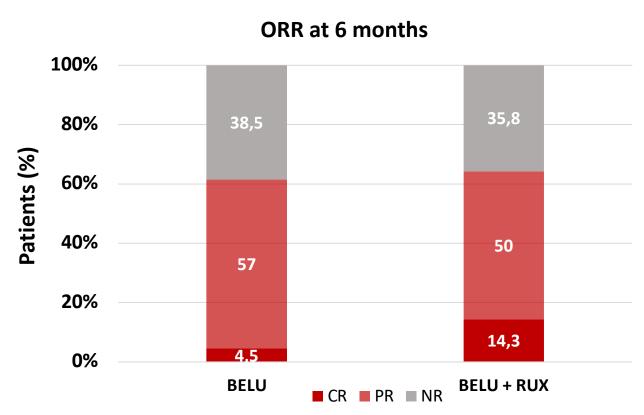


Mass-Bauer K et al. BMT 2021;56:909-16

Other Combination: RUX plus BELU in cGHVD

Variable	N = 14
Median age, years	48 (34–78)
Median number of LOT	3 (2–5)
Median time on RUX before BELU, months	37 (6–69)
cGVHD severity Severe Moderate	12 2
Median number of organs	4 (1–6)
Organ involvement	
Skin	10
Eye	10
Mouth	9
Joint/Fascia	7
Lung	5
GIT	3
Vulvo-vaginal	2/5
Median follow-up on B + R, months	10.7 (1–13)

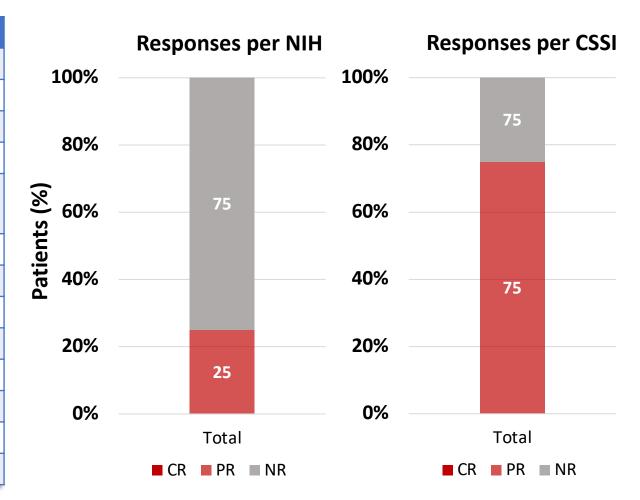
Safety profile (grade III-IV):
anemia (14%)
creatinine elevation (7%)
Bacterial infections (21%)
Respiratory viral infectiosn (36%)
VZV reactivation (7%)


No CMV nor fungal infections No cases of disease relapse

Pusik I et al. *BMT 2024*;59:282-4

RUX plus BELU: evidence of synergy?

Characteristic	BELU (n=53)	BELU + RUX (n=14)
Age, median	57 years	56 years
Sex (male)	~70%	~70%
Prior lines of cGVHD therapy	2 (1–7)	3 (1–6)
Prior ruxolitinib exposure	66–70%	100%
Multi-organ involvement	84%	86%
Time from HSCT to therapy	~30 months	~28 months
Disease severity	Similar	similar


Patients treated with **BELU + RUX** had **similar incidence** of grade III-IV **TEAEs** (29% vs 27%)

Does the RUX-BELU-AXA Triplet Outperform the Doublet?

Characteristic	Value
No. of patients	8
Male sex, n (%)	4 (50%)
Months post-transplant to cGVHD	5.1 (4–9.1)
Months from cGVHD to AXA, median (range)	21.1 (9.9–110.2)
cGVHD grade at axatilimab start, n (%)	
Severe	8 (100%)
Organ involvement severe at axatilimab start, n (%)	
Skin	5 (62.5%)
Oral	2 (25%)
Lung	2 (25%)
MSK	1 (12.5%)
Ocular	3 (37.5%)
Median number of therapies	5
Previous RUX and BELU monotherapy failure	8 (100%)

Caputo J et al. BMT 2025; epub ahead of print

Summary

- •GVHD incidence is decreasing but remains clinically significant, with 20–30% of cases becoming steroid-refractory/dependent (SR/D).
- •Current therapeutic options are limited; in Italy, ruxolitinib is the only approved agent, and responses—particularly in cGVHD—are often modest.
- •ECP remains a viable option, especially for patients without indication to ruxolitinib, and represents a low-toxicity partner for combination strategies.
- •Emerging combinations such as Ruxolitinib + ECP, Belumosudil + ECP, and novel drugs (Axatilimab) show promising activity with no major safety concerns. In heavily pretreated patients, responses are not exceptional, but overall these regimens appear feasible, tolerable, and clinically meaningful.
- •Future directions: robust prospective trials to define optimal sequencing, timing, and the true role of combination therapies in GVHD management.

Sistema Socio Sanitario

BMT Team

Nicola Polverelli Antonio Bianchessi Irene Defrancesco Giulia Losi Gianluca Martini Caterina Zerbi

Study coordinatorAlessia Taurino

Case Manager
Angela Correddu
Valentina Zoboli

- m.polverelli@smatteo.pv.it
- @NicolaPolverelliEmatologia
- **№** @N_Polverelli
- in nicola-polverelli-410513107

Unit of BMT and Cellular Therapies

